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Relation between aggregation and phase separation: Three-dimensional Monte Carlo simulations
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We study phase separation of particles in solution using Monte Carlo simulations of reversible aggregation
on a cubic lattice. Two stages of the phase separation can be clearly distinguished: initial random aggregation
and subsequent densification. Step one leads to a distribution of fractal aggregates close to the binodal and to
a temporary gel for large attractive interaction. Step two leads to isolated spherical dense domains close to the
binodal and branched wormlike strands for large attractive interactions. The transition between the two types
of structure is gradual and there is no clear feature that shows the existence of a spinodal. The first stage of the
phase separation is metastable very close to the binodal or at very large interaction energy. In the latter case,
the second step can be viewed as an aging process of the gel formed in the first step.
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[. INTRODUCTION in many if not most experimental situations the association is
not permanent. Such a system can be considered from two
It is well known that irreversible aggregation of particles different viewpoints. Either we continue to speak of aggre-
in solutions leads to the formation of self-similar clusters.gates, which form and breakup continuously, or we speak of
Many examples of such particles are spherical and aggregag@@ncentration fluctuations of individual particles. Which of
randomly such as silica or gold colloidal sphefds, oil  the two approaches appears most natural depends on the sys-
droplets[2], micelles[3] and globular proteing4]. Theoreti- ~ tem, e.g., in the case of short range attractions one might
cally, the initial stage of this process has been described itend to speak of reversible aggregation, while in the case of
terms of kinetic reaction equatiofis]. However, correlation long range attractions it may appear more appropriate to
between the positions of the aggregates cannot be dedipeak of concentration fluctuations. Reversible association
within this approach. Computer simulations have been dongay lead to phase separation into a concentratisthse
extensively for two cases: diffusiofDLCA) and reaction- phase and a dilutégas phase. Usually concentration fluc-
(RLCA) limited cluster aggregation. These simulations haveluations are invoked to explain this process. Of course, the
shown that the radiuR is related to the aggregation number two view points are strictly equivalent and it is a matter of
m through the so-called fractal dimensidp: m=RY%, with ~ semantics whether we consider two neighboring particles
d¢ equal to 1.8 and 2.1 for DLCA and RLCA, respectively. whose movement is temporarily correlated as belonging to a
They also showed that the number of partidisn) scales single cluster or as two different particles whose position is
with the aggregation numbek(m)=m~" with 7 equal to 0  correlated by the influence of an attractive potential. Aggre-
and 1.5, for DLCA and RLCA, respectively. The power law 9ation and phase separation play a crucial role in the struc-
dependence is cut off at a characteristithat increases with  turing of many complex systems. Understanding the relation
time. The results from computer simulations are compatibld€tween these phenomena is important not only from a fun-
with observations on real systerff). damental point of view 8] but also for the design of new
It follows from the fractal structure of the aggregates thatmaterials.
they occupy an increasing volume fraction as the association Our aim here is to show results from computer simula-
process proceeds so that at some point correlation betwedigns that clarify the relation between random association
the positions of the aggregates becomes important_ Computg}to fractal clusters and densification of the clusters that
simulations have shown that when the cumulated voluméeads to phase separation.
fraction of the aggregates approaches unity, i.e., when the

aggregates begin to overlap, the association becomes similar Il RESULTS AND DISCUSSION
to a percolation proceg$]. Aggregates formed by percola- '
tion are characterized by;=2.5 andr=2.2[7]. As a con- The simulation method is explained in detail elsewhere

seguence the aggregates have a local structure determined[l9y, but it is basically a Monte Carlo simulation of DLCA on
the initial stage(e.g., DLCA or RLCA, which we will call  a cubic lattice. Initially, a fraction of site# is occupied and
flocculation, and a large scale structure determined by thelusters are constructed by forming bonds between nearest
percolation process. The length scale at which the transitioneighbors with probabilityP. A cluster is chosen randomly
occurs can be estimated roughly as the average size of tlemd moved one site in a random direction with a probability
aggregates when the cumulated volume fraction is unity. Buinversely proportional to the radius of the cluster, which
computer simulations show that over a length scale of asimulates Zimm dynamics. The movement is rejected if it
least one order of magnitude the structure is interme@@éte leads to overlap with another cluster. The unit of time in the
Although clear examples of irreversible aggregation existsimulation is the time it takes to attempt to moMe ran-
domly chosen clusters witl. the total number of clusters in
the system at that time. This is equivalent to the time it takes
*Electronic address: Jean-Christophe.Gimel@univ-lemans.fr  a monomer to diffuse over one site. After each unit of time
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0 e ARARAARAN AARAARERS ARRARALN AARRARAAS out percolation of bonded sites. IV: The system phase sepa-
rates, but during the phase separation temporarily a transient
gel formed. The lifetime of the transient gel increases with
increasingg and|ul.

We define percolation here in terms of bonded sites, i.e.,

as soon as an uninterrupted sequence of bonded sites con-
nects two opposing sides of the lattice we consider the sys-
tem as percolated. Alternatively, one could consider percola-
tion of sites independent of bonding, see dotted line in Fig. 1.
Site percolation in this sense occurs¢@t0.31 foru=0.
For large|u| almost all nearest neighbors are bound so that
bond and site percolation lines merge. Of course, only bond
percolation leads to a gel in the sense of a 3-D connected
structure and is relevant for mechanical properties while site
percolation is relevant for conductivity.

In order to study the relation between aggregation and
phase separation we need to follow the evolution of the sys-
tem to equilibrium. A straightforward method is to determine
the average number of contacts per mononzgras a func-

FIG. 1. Phase diagram of the model system, whens the  tion of time, which is equivalent to following the enthalpy
interaction energy per nearest neighbor ahdis the volume frac- decrease of the system per monomer. Figus €hows the
tion. Circles indicate the binodal obtained from computer simula-evolution of z at different values ofi for ¢=0.1. For|ul|
tions while the solid line gives the theoretical prediction for a 3D larger than the value at the binodali|), equilibrium is not
lattice gag12]. Squares indicate the bond percolation threshold; theeached in direct simulations because maturation of the
dashed line is a guide to the eye. Triangles indicate the site perc@tense phaséso-called Oswald ripenings very slow. In our
lation threshold; the dotted line is a guide to the eye. See the text fogimulation the late stage evolution of the phase separation is
the meaning of the roman numerals. essentially due to evaporation and condensation of mono-

mers and small oligomers.
all clusters are reconstructed. A cluster is thus defined as a The equilibrium value of (z.,) can be estimated by cal-
collection of monomers that move cooperatively during oneculatingz of the gas fraction which equilibrates more rapidly
unit of time. Although, obviously, lattice simulations cannot and by approximating for the dense fractipwith the mean
represent the detail of real systems, we believe that the lardéeld value: six times the density of the dense phase. The
scale features that come out of the simulations are characteeatter approximation is reasonable because the density of the
istic of real systems. Presently, off-lattice simulations cannotiense phase is close to unity for the systems we are studying.
be done over the length and time scale that is necessary tdowever, it ignores the surface of the dense phaggin-
study the evolution of the phase separafibf]. creases steeply at the binodal,& —1.08) from 1.45 and

In our model pairs of nearest neighbors can be in twdbecomes 6 ati— —, see Fig. &). The rate at which the
states: bound and free, with an enthalpy gag&f, in units  system evolves to equilibrium can now be compared for dif-
of kT. The occupancy of the two states is given by the Bolt-ferentu by plottingz/z.4 as a function of time, see Fig(18.
zmann statisticsP/(1—P)=exp(—AH). The total interac- Clearly, equilibrium is reached more quickly whéua| is
tion energy (1) per nearest neighbor has an entropic contri-decreased.
bution[11] caused by the distribution of bonded states over A closer look at the data reveals that a metastable state is
all pairs of nearest neighbor§AS=—PIn(P)—(1-P)In(1  reached in two cases: far—u, and foru— —c«. Foru
—P). Therefore, our model is equivalent to a lattice gas—u, the metastable state represents a distribution of fractal
model with total interaction energy=PAH—-TAS=In(1 clusters and is close to equilibrium. Detailed analysis of the
—P) between nearest neighbors. The binodal for the threepair correlation functions and cluster size distributions will
dimensional(3D) lattice gas was obtained from a series ex-be published elsewhere. The average size of the clusters at
pansion by Wakefielfl12], see Fig. 1. The binodal obtained the binodal increases with increasing volume fraction and
from our computer simulations is very close to the theoreti-diverges atp~0.3. For¢>0.3 the metastable state close to
cal prediction. the binodal is a gel. Fou— —« the metastable state is al-

We have shown in Ref9] that the system develops into ways a gel with a negligible sol fraction and is very far from
one of the four different states depending|ahand ¢, see  equilibrium.

Fig. 1. I: For smallju| or small ¢, a stable distribution of In these two cases we can clearly distinguish two steps in
transient clusters is formed at equilibrium. The characteristithe evolution of the system. The first step is random aggre-
size of the clusters increases with increasifigand |u|. It gation that leads to the formation of fractal clusters and is
diverges at the percolation line at the border with regime llrelatively fast at all values ofl. The second step is local
(dashed ling but not at the border with regime Illsolid  densification which leads to the formation of a dense phase.
line). 1l: For small |u| and large¢ a stable transient gel is The rate of the second step decreases with incredsing
formed at equilibrium. 1ll: The system phase separates withwhich explains the metastable state tors — .
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FIG. 2. (a) Evolution of the average number of nearest neigh-
bors per site £) at different interaction energies) indicated in the
figure. All results are obtained on a cubic lattice of 2Gftes at
#»=0.1. (b) Some of the results frorte) normalized with the equi-
librium value (zsg). In both figures, the dashed line represents the
evolution for a DLCA processc) Evolution ofz.4 as a function of
u for ¢=0.1; the dashed line indicates the mean field prediction of
The results presented here were obtained on a cubic lattice of
200° sites. The importance of finite size effects on the struc-

The origin of the metastable state foruy is different.  tures depends on the ratio of the correlation length of the
Here dense domains are not stable unless they are larger thstnucture and the lattice size Even without explicit calcu-

a critical size that diverges at—uy,. However, once stable lation of the pair correlation function the effect can be
dense domains are formed, their size at a given time is largafauged directly from the images. It is clear that only for the
for u closer touy,, which explains why true equilibrium is latest stage of the phase separation the size of the dense
reached sooner. Of course, the fraction of monomers in thdomains becomes comparableltoWe have checked using
dense phase decreases with decredsihgnd at some value lattices withL =100 andL =300 that there is no significant
close touy, there are not enough monomers in the system tdinite size influence on the evolution af nor on the phase
create even a single stable dense domain. diagram shown in Fig. 1.

Figure 3 shows three dimensional images of the evolution For u close tou,, initially many small dense clusters are
of the system at two values af. In Fig. 4, we show the formed which are not stable. Then concomitant with the
structure at a given time for different interaction energiesstrong increase of, see Fig. 2, larger stable spherical dense

FIG. 3. Images of the system at different stages of the phase
separation foru= —1.88 (left pane) and u= —1.14 (right pane).
The time is indicated in the figure. The gas fraction is important for
u=—1.14 (64%) and has been partly removed for clafit$]. All
results are obtained on a cubic lattice of 28f@es atp=0.1.
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creasing|u| from u, is gradual and there is no sign of a
particular value that could be defined as the spinodal. These
observations confirm the ambiguity in defining spinodal de-
composition, at least for short range interactions, as dis-
cussed at length by Binder and Stauff&#].

The question remains whether these simulations describe
real systems. Since we have included only nearest neighbor
interactions the simulations only describe particles with short
range interactions. Furthermore, as mentioned above large
clusters are essentially immobile which means that the later
stage of the phase separation occurs only via evaporation and
condensation of monomers and small oligomers. The use of a
lattice in the simulations influences the positions of the bin-
odal and the percolation line, but it does not modify the
general features of the four regions defined in Fig. 1. In fact,
off-lattice simulations showed similar features although they
could not be done on the length and time scales necessary to
clearly reveal the two steps in the phase separation process.
Of course, the local structure of the clusters is determined by
the lattice and we cannot distinguish between a liquid and a
crystal dense phase. However, the discrete underlying lattice
structure should not matter for the features on the much
longer length scales shown in Figs. 3 and 4. Finally, as men-
tioned above finite size effects are not important as long as
the characteristic size of the dense domains is much less that
L.

Ill. CONCLUSION

FIG. 4. Images of the system &t 2 X 10° for different interac-
tion energies indicated in the figure. The gas fraction has bee
partly removed for clarityf13] for u= —1.20,u=—1.14, andu=
—1.11. All results are obtained on a cubic lattice of 28fes at
¢$=0.1.

Phase separation of particles with short range attraction is
Rharacterized by two steps: In the first step the particles ag-
gregate to form fractal clusters which leads to gelation for
weak reversibility or largep. In the second step the dense
domains develop on the structure formed in the first step,

q . f d that woical f leati hich leads eventually to phase separation. The origin of

omatl;]ns are or'r:ne th a aret yplfi[?] or a nuc eb? lon afn ranched wormlike domains which is generally attributed to

ggzwmogtr%?ev:ﬁi.chov:/e r?s\?esyjr:é?/z d f(e)rrec:Zr?q/S?i]zatngss ralscpiinodal decomposition is caused by the formation of a per-
. ' lating network of randoml r rticles in the fir

for larger |u| show the formation of randomly branched colating network of randomly aggregated particles in the first

like d ins that h teristic f inodal d step. If step two is very slow compared to step one, one
wormiike domains that are characteristc for spinodal decomy,, ;o a5 5 metastable state. For a system close to the binodal
position. The gas fraction is small and can be clearly distin

guished the metastable state is a distribution of fractal clusters or for
" . . >0. rcolating network. The m [ for
The difference in the structural evolution of the denseqS 0.3 a percolating netwo e metastable state for a

. . - T~ "system with strong attractive interaction is a percolating net-
phase is easy to understand in terms of the coarsening in st g P g

two of the underlving structure formed in st ne. or rk at all volume fractions. Off-lattice simulations also in-
0 of the underlying structure forme step one. dicated the existence of these two steps in the phase separa-

close touy the underlying structure consists of clusters thattion procesg10], although they could not be done on the

?re smaller trﬁn thetr?tab{e ?elrzwse Idommti’ Wh'gh ?r.e therfaisfngth and time scales that are necessary to clearly reveal the
ore spherical from the start. For 1arg € underying 1o steps. The lattice simulation used in this study gives a

structure is a percolating network and the dense phase devq Salistic picture of the evolution of rigid spherical particles

Ops on this network. It IS ck_aar that the d_ense phase cann?gn a viscous mediupnwith short range interactions over the
itself percolate at any time if the underlylng structure do.eﬁime and length scale necessary to characterize phase sepa-
not percolate. The network coarsens until the thickenin ation
strands no longer percolate. This process can be viewed as an
aging of the gel. The time interval during which the dense
phase percolates increases with increasirjgand diverges

for u— —o. The system continues to minimize the surface

area of the dense domains and at the latest stages of the We thank F. Parazza and Y. Uss@dMR5525 CNRS,
phase separation they are spherical for Arjy<~. The dif-  Grenoble, Frangefor the use of their computer program to

ference in the structural evolution of the system when increate the 3D images.
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